Resolution- and throughput-enhanced spectroscopy using high-throughput computational slit

نویسندگان

  • Farnoud Kazemzadeh
  • Alexander Wong
چکیده

There exists a fundamental trade-off between the spectral resolution and the efficiency or throughput for all optical spectrometers. The primary factors affecting the spectral resolution and throughput of an optical spectrometer are the size of the entrance aperture and the optical power of the focusing element. So far, the collective optimization of the above mentioned has proven difficult. Here, we introduce the concept of high-throughput computational slits (HTCS), a numerical technique for improving both the effective spectral resolution and efficiency of a spectrometer. The proposed HTCS approach was experimentally validated using an optical spectrometer configured with a 200 μm entrance aperture, test, and a 50 μm entrance aperture control, demonstrating improvements in the spectral resolution of the spectrum by ∼50% over the control spectral resolution and improvements in efficiency of >2 times over the efficiency of the largest entrance aperture used in this Letter, while producing highly accurate spectra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Powerful DMD-based light sources with a high throughput virtual slit

Many DMD-based programmable light sources consist of a white light source and a pair of spectrometers operating in subtractive mode. A DMD between the two spectrometers shapes the delivered spectrum. Since both spectrometers must (1) fit within a small volume, and (2) provide significant spectral resolution, a narrow intermediary slit is required. Another approach is to use a spectrometer desig...

متن کامل

Automated image curvature assessment and correction for high-throughput Raman spectroscopy and microscopy

Raman spectroscopy and microscopy can provide molecular information for complex materials such as biological tissue and cells. In these applications, light-collection throughput is essential for speedy acquisition of high-quality data. To improve throughput, two-dimensional detectors and high numerical aperture (NA) optical systems have been employed. However, owing to the out-of-plane diffract...

متن کامل

High Resolution Hyperspectral Imaging with a High Throughput Virtual Slit

Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual SlitTM (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral res...

متن کامل

High-throughput, high-resolution Echelle deep-UV Raman spectrometer.

We constructed an ultrahigh-throughput, high-resolution ultraviolet (UV) Raman spectrograph that utilizes a high-efficiency filter-stage monochromator and a high-dispersion Echelle spectrograph. The spectrograph utilizes a total of six mirrors and two gratings, with an overall efficiency at 229 nm of ~18%. The limiting resolution of our spectrometer is 0.6 cm⁻¹ full width half-maximum (FWHM), a...

متن کامل

Adaptive Optics Spectroscopy: Preliminary Theoretical Results

Diffraction-limited spectroscopy with adaptive optics (AO) has several advantages over traditional seeing-limited spectroscopy. First, high resolution can be achieved without a large loss of light at the entrance slit of the spectrograph. Second, the small AO image width allows the cross-dispersed orders to be spaced closer together on the detector, allowing a large wavelength coverage. Third, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Optics letters

دوره 41 18  شماره 

صفحات  -

تاریخ انتشار 2016